Search Results

SORT BY: PREVIOUS / NEXT
Author:Mitchell, James 

Working Paper
Communicating Data Uncertainty: Multi-Wave Experimental Evidence for UK GDP

Economic statistics are commonly published without any explicit indication of their uncertainty. To assess if and how the UK public interprets and understands data uncertainty, we conduct two waves of a randomized controlled online experiment. A control group is presented with the headline point estimate of GDP, as emphasized by the statistical office. Treatment groups are then presented with alternative qualitative and quantitative communications of GDP data uncertainty. We find that most of the public understands that uncertainty is inherent in official GDP numbers. But communicating ...
Working Papers , Paper 21-28

Working Paper
Are Revisions to State-Level GDP Data in the US Well Behaved?

No, first estimates of state GDP growth are not rational forecasts, except for Georgia. Revisions to first estimates of state-level GDP growth tend to be biased, large, and/or predictable using information known at the time of the first estimate.
Working Papers , Paper 25-11

Working Paper
Censored Density Forecasts: Production and Evaluation

This paper develops methods for the production and evaluation of censored density forecasts. The focus is on censored density forecasts that quantify forecast risks in a middle region of the density covering a specified probability, and ignore the magnitude but not the frequency of outlying observations. We propose a fixed-point algorithm that fits a potentially skewed and fat-tailed density to the inner observations, acknowledging that the outlying observations may be drawn from a different but unknown distribution. We also introduce a new test for calibration of censored density forecasts. ...
Working Papers , Paper 21-12R

Working Paper
Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics

Quantile regression methods are increasingly used to forecast tail risks and uncertainties in macroeconomic outcomes. This paper reconsiders how to construct predictive densities from quantile regressions. We compare a popular two-step approach that fits a specific parametric density to the quantile forecasts with a nonparametric alternative that lets the 'data speak.' Simulation evidence and an application revisiting GDP growth uncertainties in the US demonstrate the flexibility of the nonparametric approach when constructing density forecasts from both frequentist and Bayesian quantile ...
Working Papers , Paper 22-12

Working Paper
Bayesian Modeling of Time-Varying Parameters Using Regression Trees

In light of widespread evidence of parameter instability in macroeconomic models, many time-varying parameter (TVP) models have been proposed. This paper proposes a nonparametric TVP-VAR model using Bayesian additive regression trees (BART). The novelty of this model stems from the fact that the law of motion driving the parameters is treated nonparametrically. This leads to great flexibility in the nature and extent of parameter change, both in the conditional mean and in the conditional variance. In contrast to other nonparametric and machine learning methods that are black box, inference ...
Working Papers , Paper 23-05

Working Paper
The FOMC versus the Staff: Do Policymakers Add Value in Their Tales?

Using close to 40 years of textual data from FOMC transcripts and the Federal Reserve staff's Greenbook/Tealbook, we extend Romer and Romer (2008) to test if the FOMC adds information relative to its staff forecasts not via its own quantitative forecasts but via its words. We use methods from natural language processing to extract from both types of document text-based forecasts that capture attentiveness to and sentiment about the macroeconomy. We test whether these text-based forecasts provide value-added in explaining the distribution of outcomes for GDP growth, the unemployment rate, and ...
Working Papers , Paper 23-20

Working Paper
Predictive Density Combination Using a Tree-Based Synthesis Function

Bayesian predictive synthesis (BPS) provides a method for combining multiple predictive distributions based on agent/expert opinion analysis theory and encompasses a range of existing density forecast pooling methods. The key ingredient in BPS is a “synthesis” function. This is typically specified parametrically as a dynamic linear regression. In this paper, we develop a nonparametric treatment of the synthesis function using regression trees. We show the advantages of our tree-based approach in two macroeconomic forecasting applications. The first uses density forecasts for GDP growth ...
Working Papers , Paper 23-30

Working Paper
Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics

Quantile regression methods are increasingly used to forecast tail risks and uncertainties in macroeconomic outcomes. This paper reconsiders how to construct predictive densities from quantile regressions. We compare a popular two-step approach that fits a specific parametric density to the quantile forecasts with a nonparametric alternative that lets the "data speak." Simulation evidence and an application revisiting GDP growth uncertainties in the US demonstrate the flexibility of the nonparametric approach when constructing density forecasts from both frequentist and Bayesian quantile ...
Working Papers , Paper 22-12R

Journal Article
A New Measure of Consumers’ (In)Attention to Inflation

Since the onset of the SARS-CoV-2 (COVID-19) pandemic in March 2020, the Federal Reserve Bank of Cleveland has been running a daily survey that asks consumers for their views on how they are responding to COVID-19 and how COVID-19 is likely to affect the economy. Among the many questions asked, the survey solicits consumers’ inflation expectations. This is an important data set given that such expectations, while affected by current and past inflation, have long been believed to influence future inflation. In this Commentary, we use these daily expectations data to propose a new measure of ...
Economic Commentary , Volume 2022 , Issue 14 , Pages 7

Working Paper
Deep Neural Network Estimation in Panel Data Models

In this paper we study neural networks and their approximating power in panel data models. We provide asymptotic guarantees on deep feed-forward neural network estimation of the conditional mean, building on the work of Farrell et al. (2021), and explore latent patterns in the cross-section. We use the proposed estimators to forecast the progression of new COVID-19 cases across the G7 countries during the pandemic. We find significant forecasting gains over both linear panel and nonlinear time-series models. Containment or lockdown policies, as instigated at the national level by governments, ...
Working Papers , Paper 23-15

FILTER BY year

FILTER BY Bank

FILTER BY Series

FILTER BY Content Type

FILTER BY Jel Classification

C53 9 items

E37 6 items

C32 5 items

E58 5 items

E01 4 items

E31 4 items

show more (17)

FILTER BY Keywords

Bayesian methods 3 items

Nowcasting 3 items

Vector autoregressions 3 items

inflation 3 items

monetary policy 3 items

surveys 3 items

show more (67)

PREVIOUS / NEXT