Search Results

SORT BY: PREVIOUS / NEXT
Jel Classification:E17 

Working Paper
Nowcasting Tail Risks to Economic Activity with Many Indicators

This paper focuses on tail risk nowcasts of economic activity, measured by GDP growth, with a potentially wide array of monthly and weekly information. We consider different models (Bayesian mixed frequency regressions with stochastic volatility, classical and Bayesian quantile regressions, quantile MIDAS regressions) and also different methods for data reduction (either the combination of forecasts from smaller models or forecasts from models that incorporate data reduction). The results show that classical and MIDAS quantile regressions perform very well in-sample but not out-of-sample, ...
Working Papers , Paper 20-13

Working Paper
Indeterminacy and forecastability

Recent studies document the deteriorating performance of forecasting models during the Great Moderation. This conversely implies that forecastability is higher in the preceding era, when the economy was unexpectedly volatile. We offer an explanation for this phenomenon in the context of equilibrium indeterminacy in dynamic stochastic general equilibrium models. First, we analytically show that a model under indeterminacy exhibits richer dynamics that can improve forecastability. Then, using a prototypical New Keynesian model, we numerically demonstrate that indeterminacy due to passive ...
Globalization Institute Working Papers , Paper 91

Working Paper
Forecasting with Sufficient Dimension Reductions

Factor models have been successfully employed in summarizing large datasets with few underlying latent factors and in building time series forecasting models for economic variables. When the objective is to forecast a target variable y with a large set of predictors x, the construction of the summary of the xs should be driven by how informative on y it is. Most existing methods first reduce the predictors and then forecast y in independent phases of the modeling process. In this paper we present an alternative and potentially more attractive alternative: summarizing x as it relates to y, so ...
Finance and Economics Discussion Series , Paper 2015-74

Working Paper
Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions

A rapidly growing body of research has examined tail risks in macroeconomic outcomes. Most of this work has focused on the risks of significant declines in GDP, and it has relied on quantile regression methods to estimate tail risks. Although much of this work discusses asymmetries in conditional predictive distributions, the analysis often focuses on evidence of downside risk varying more than upside risk. We note that this pattern in risk estimates over time could obtain with conditional distributions that are symmetric but subject to simultaneous shifts in conditional means (down) and ...
Working Papers , Paper 20-02R

Working Paper
Country-specific oil supply shocks and the global economy: a counterfactual analysis

This paper investigates the global macroeconomic consequences of country-specific oilsupply shocks. Our contribution is both theoretical and empirical. On the theoretical side, we develop a model for the global oil market and integrate this within a compact quarterly model of the global economy to illustrate how our multi-country approach to modelling oil markets can be used to identify country-specific oil-supply shocks. On the empirical side, estimating the GVAR-Oil model for 27 countries/regions over the period 1979Q2 to 2013Q1, we show that the global economic implications of oil-supply ...
Globalization Institute Working Papers , Paper 242

Working Paper
Specification Choices in Quantile Regression for Empirical Macroeconomics

Quantile regression has become widely used in empirical macroeconomics, in particular for estimating and forecasting tail risks to macroeconomic indicators. In this paper we examine various choices in the specification of quantile regressions for macro applications, for example, choices related to how and to what extent to include shrinkage, and whether to apply shrinkage in a classical or Bayesian framework. We focus on forecasting accuracy, using for evaluation both quantile scores and quantile-weighted continuous ranked probability scores at a range of quantiles spanning from the left to ...
Working Papers , Paper 22-25

Working Paper
Forecasting with Shadow-Rate VARs

Interest rate data are an important element of macroeconomic forecasting. Projections of future interest rates are not only an important product themselves, but also typically matter for forecasting other macroeconomic and financial variables. A popular class of forecasting models is linear vector autoregressions (VARs) that include shorter- and longer-term interest rates. However, in a number of economies, at least shorter-term interest rates have now been stuck for years at or near their effective lower bound (ELB), with longer-term rates drifting toward the constraint as well. In such an ...
Working Papers , Paper 21-09

Working Paper
Forecasting Core Inflation and Its Goods, Housing, and Supercore Components

This paper examines the forecasting efficacy and implications of the recently popular breakdown of core inflation into three components: goods excluding food and energy, services excluding energy and housing, and housing. A comprehensive historical evaluation of the accuracy of point and density forecasts from a range of models and approaches shows that a BVAR with stochastic volatility in aggregate core inflation, its three components, and wage growth is an effective tool for forecasting inflation's components as well as aggregate core inflation. Looking ahead, the model's baseline ...
Working Papers , Paper 23-34

Working Paper
Financial Conditions and Economic Activity: Insights from Machine Learning

Machine learning (ML) techniques are used to construct a financial conditions index (FCI). The components of the ML-FCI are selected based on their ability to predict the unemployment rate one-year ahead. Three lessons for macroeconomics and variable selection/dimension reduction with large datasets emerge. First, variable transformations can drive results, emphasizing the need for transparency in selection of transformations and robustness to a range of reasonable choices. Second, there is strong evidence of nonlinearity in the relationship between financial variables and economic ...
Finance and Economics Discussion Series , Paper 2020-095

FILTER BY year

FILTER BY Content Type

FILTER BY Author

Clark, Todd E. 12 items

Carriero, Andrea 10 items

Marcellino, Massimiliano 7 items

Cotton, Christopher D. 4 items

Giannone, Domenico 4 items

Mertens, Elmar 4 items

show more (85)

FILTER BY Jel Classification

E37 29 items

C53 25 items

C32 13 items

E31 12 items

F47 11 items

show more (53)

FILTER BY Keywords

Forecasting 9 items

downside risk 5 items

forecasting 5 items

pandemics 5 items

quantile regressions 5 items

COVID-19 4 items

show more (156)

PREVIOUS / NEXT