Search Results

Showing results 1 to 10 of approximately 20.

(refine search)
SORT BY: PREVIOUS / NEXT
Author:Geweke, John F. 

Working Paper
Bayesian comparison of econometric models

Working Papers , Paper 532

Working Paper
Bayesian reduced rank regression in econometrics

The reduced rank regression model arises repeatedly in theoretical and applied econometrics. To date the only general treatments of this model have been frequentist. This paper develops general methods for Bayesian inference with noninformative reference priors in this model, based on a Markov chain sampling algorithm, and procedures for obtaining predictive odds ratios for regression models with different ranks. These methods are used to obtain evidence on the number of factors in a capital asset pricing model.
Working Papers , Paper 540

Report
Monte Carlo simulation and numerical integration

This is a survey of simulation methods in economics, with a specific focus on integration problems. It describes acceptance methods, importance sampling procedures, and Markov chain Monte Carlo methods for simulation from univariate and multivariate distributions and their application to the approximation of integrals. The exposition gives emphasis to combinations of different approaches and assessment of the accuracy of numerical approximations to integrals and expectations. The survey illustrates these procedures with applications to simulation and integration problems in economics.
Staff Report , Paper 192

Report
Measuring the pricing error of the arbitrage pricing theory

This paper provides an exact Bayesian framework for analyzing the arbitrage pricing theory (APT). Based on the Gibbs sampler, we show how to obtain the exact posterior distributions for functions of interest in the factor model. In particular, we propose a measure of the APT pricing deviations and obtain its exact posterior distribution. Using monthly portfolio returns grouped by industry and market capitalization, we find that there is little improvement in reducing the pricing errors by including more factors beyond the first one.
Staff Report , Paper 189

Working Paper
Bayesian inference for linear models subject to linear inequality constraints

The normal linear model, with sign or other linear inequality constraints on its coefficients, arises very commonly in many scientific applications. Given inequality constraints Bayesian inference is much simpler than classical inference, but standard Bayesian computational methods become impractical when the posterior probability of the inequality constraints (under a diffuse prior) is small. This paper shows how the Gibbs sampling algorithm can provide an alternative, attractive approach to inference subject to linear inequality constraints in this situation, and how the GHK probability ...
Working Papers , Paper 552

Working Paper
Variable selection and model comparison in regression

In the specification of linear regression models it is common to indicate a list of candidate variables from which a subset enters the model with nonzero coefficients. This paper interprets this specification as a mixed continuous-discrete prior distribution for coefficient values. It then utilizes a Gibbs sampler to construct posterior moments. It is shown how this method can incorporate sign constraints and provide posterior probabilities for all possible subsets of regressors. The methods are illustrated using some standard data sets.
Working Papers , Paper 539

Report
Statistical inference in the multinomial multiperiod probit model

Statistical inference in multinomial multiperiod probit models has been hindered in the past by the high dimensional numerical integrations necessary to form the likelihood functions, posterior distributions, or moment conditions in these models. We describe three alternative approaches to inference that circumvent the integration problem: Bayesian inference using Gibbs sampling and data augmentation to compute posterior moments, simulated maximum likelihood (SML) estimation using the GHK recursive probability simulator, and method of simulated moment (MSM) estimation using the GHK simulator. ...
Staff Report , Paper 177

Working Paper
Prior density ratio class robustness in econometrics

This paper provides a general and efficient method for computing density ratio class bounds on posterior moments, given the output of a posterior simulator. It shows how density ratio class bounds for posterior odds ratios may be formed in many situations, also on the basis of posterior simulator output. The computational method is used to provide density ratio class bounds in two econometric models. It is found that the exact bounds are approximated poorly by their asymptotic approximation, when the posterior distribution of the function of interest is skewed. It is also found that posterior ...
Working Papers , Paper 553

Report
Using simulation methods for Bayesian econometric models: inference, development, and communication

This paper surveys the fundamental principles of subjective Bayesian inference in econometrics and the implementation of those principles using posterior simulation methods. The emphasis is on the combination of models and the development of predictive distributions. Moving beyond conditioning on a fixed number of completely specified models, the paper introduces subjective Bayesian tools for formal comparison of these models with as yet incompletely specified models. The paper then shows how posterior simulators can facilitate communication between investigators (for example, ...
Staff Report , Paper 249

Report
Mixture of normals probit models

This paper generalizes the normal probit model of dichotomous choice by introducing mixtures of normals distributions for the disturbance term. By mixing on both the mean and variance parameters and by increasing the number of distributions in the mixture these models effectively remove the normality assumption and are much closer to semiparametric models. When a Bayesian approach is taken, there is an exact finite-sample distribution theory for the choice probability conditional on the covariates. The paper uses artificial data to show how posterior odds ratios can discriminate between ...
Staff Report , Paper 237

PREVIOUS / NEXT