Search Results

SORT BY: PREVIOUS / NEXT
Author:Shin, Minchul 

Working Paper
A New Approach to Identifying the Real Effects of Uncertainty Shocks

This paper proposes a multivariate stochastic volatility-in-vector autoregression model called the conditional autoregressive inverse Wishart-in-VAR (CAIW-in-VAR) model as a framework for studying the real effects of uncertainty shocks. We make three contributions to the literature. First, the uncertainty shocks we analyze are estimated directly from macroeconomic data so they are associated with changes in the volatility of the shocks hitting the macroeconomy. Second, we advance a new approach to identify uncertainty shocks by placing limited economic restrictions on the first and second ...
Finance and Economics Discussion Series , Paper 2016-040

Journal Article
Tracking U.S. Real GDP Growth During the Pandemic

During this fast-moving pandemic, it's vital that policymakers can rely on real-time estimates of real GDP growth. Jonas Arias and Minchul Shin show us how it's done.
Economic Insights , Volume 5 , Issue 3 , Pages 9-14

Working Paper
A Statistical Learning Approach to Land Valuation: Optimizing the Use of External Information

We develop a statistical learning model to estimate the value of vacant land for any parcel, regardless of improvements. Rooted in economic theory, the model optimizes how to combine common improved property sales with rare, but more informative, vacant land sales. It estimates how land values change with geography and other features and determines how much information either vacant or improved sales provide to nearby areas through spatial correlation. For most census tracts, incorporating improved sales often doubles the certainty of land value estimates.
Working Papers , Paper 22-38

Working Paper
On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates

We propose methods for constructing regularized mixtures of density forecasts. We explore a variety of objectives and regularization penalties, and we use them in a substantive exploration of Eurozone inflation and real interest rate density forecasts. All individual inflation forecasters (even the ex post best forecaster) are outperformed by our regularized mixtures. From the Great Recession onward, the optimal regularization tends to move density forecasts’ probability mass from the centers to the tails, correcting for overconfidence.
Working Papers , Paper 21-06

Working Paper
Inference Based On Time-Varying SVARs Identified with Time Restrictions

We propose an approach for Bayesian inference in time-varying structural vector autoregressions (SVARs) identified with sign restrictions. The linchpin of our approach is a class of rotation-invariant time-varying SVARs in which the prior and posterior densities of any sequence of structural parameters belonging to the class are invariant to orthogonal transformations of the sequence. Our methodology is new to the literature. In contrast to existing algorithms for inference based on sign restrictions, our algorithm is the first to draw from a uniform distribution over the sequences of ...
FRB Atlanta Working Paper , Paper 2024-4

Working Paper
DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors

Currently, there is growing interest in dynamic stochastic general equilibrium (DSGE) models that have more parameters, endogenous variables, exogenous shocks, and observables than the Smets and Wouters (2007) model, and substantial additional complexities from non-Gaussian distributions and the incorporation of time-varying volatility. The popular DYNARE software package, which has proved useful for small and medium-scale models is, however, not capable of handling such models, thus inhibiting the formulation and estimation of more re-alistic DSGE models. A primary goal of this paper is to ...
Working Papers , Paper 21-02

Working Paper
Constructing Applicants from Loan-Level Data: A Case Study of Mortgage Applications

We develop a clustering-based algorithm to detect loan applicants who submit multiple applications (“cross-applicants”) in a loan-level dataset without personal identifiers. A key innovation of our approach is a novel evaluation method that does not require labeled training data, allowing us to optimize the tuning parameters of our machine learning algorithm. By applying this methodology to Home Mortgage Disclosure Act (HMDA) data, we create a unique dataset that consolidates mortgage applications to the individual applicant level across the United States. Our preferred specification ...
Working Papers , Paper 25-05

Working Paper
Measuring International Uncertainty : The Case of Korea

We leverage a data rich environment to construct and study a measure of macroeconomic uncertainty for the Korean economy. We provide several stylized facts about uncertainty in Korea from 1991M10-2016M5. We compare and contrast this measure of uncertainty with two other popular uncertainty proxies, financial and policy uncertainty proxies, as well as the U.S. measure constructed by Jurado et. al. (2015).
Finance and Economics Discussion Series , Paper 2017-066

Working Paper
Measuring Fairness in the U.S. Mortgage Market

Black Americans are both substantially more likely to have their mortgage application rejected and substantially more likely to default on their mortgages than White Americans. We take these stark inequalities as a starting point to ask the question: How fair or unfair is the U.S. mortgage market? We show that the answer to this question crucially depends on the definition of fairness. We consider six competing and widely used definitions of fairness and find that they lead to markedly different conclusions. We then combine these six definitions into a series of stylized facts that offer a ...
Working Papers , Paper 25-04

Working Paper
Inference Based on Time-Varying SVARs Identified with Sign Restrictions

We propose an approach for Bayesian inference in time-varying structural vector autoregressions (SVARs) identified with sign restrictions. The linchpin of our approach is a class of rotation-invariant time-varying SVARs in which the prior and posterior densities of any sequence of structural parameters belonging to the class are invariant to orthogonal transformations of the sequence. Our methodology is new to the literature. In contrast to existing algorithms for inference based on sign restrictions, our algorithm is the first to draw from a uniform distribution over the sequences of ...
Working Papers , Paper 24-18

FILTER BY year

Created with Highcharts 10.3.32010s2020s

FILTER BY Content Type

FILTER BY Jel Classification

C11 10 items

C32 6 items

C5 4 items

C51 3 items

E37 3 items

E52 3 items

show more (27)

FILTER BY Keywords

Bayesian inference 4 items

Marginal likelihood 4 items

Bayesian estimation 3 items

identification 3 items

structural vector autoregressions 3 items

time-varying parameters 3 items

show more (75)

PREVIOUS / NEXT