Search Results
Working Paper
The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility
This paper compares alternative models of time-varying macroeconomic volatility on the basis of the accuracy of point and density forecasts of macroeconomic variables. In this analysis, we consider both Bayesian autoregressive and Bayesian vector autoregressive models that incorporate some form of time-varying volatility, precisely stochastic volatility (both with constant and time-varying autoregressive coeffi cients), stochastic volatility following a stationary AR process, stochastic volatility coupled with fat tails, GARCH, and mixture-of-innovation models. The comparison is based on the ...
Working Paper
Term structure forecasting using macro factors and forecast combination
We examine the importance of incorporating macroeconomic information and, in particular, accounting for model uncertainty when forecasting the term structure of U.S. interest rates. We start off by analyzing and comparing the forecast performance of several individual term structure models. Our results confirm and extend results found in previous literature that adding macroeconomic information, through factors extracted from a large number of individual series, tends to improve interest rate forecasts. We then show, however, that the predictive power of individual models varies over time ...
Working Paper
Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts
This paper shows entropic tilting to be a flexible and powerful tool for combining medium-term forecasts from BVARs with short-term forecasts from other sources (nowcasts from either surveys or other models). Tilting systematically improves the accuracy of both point and density forecasts, and tilting the BVAR forecasts based on nowcast means and variances yields slightly greater gains in density accuracy than does just tilting based on the nowcast means. Hence entropic tilting can offer?more so for persistent variables than not-persistent variables?some benefits for accurately estimating the ...
Report
Real-time inflation forecasting in a changing world
This paper revisits the accuracy of inflation forecasting using activity and expectations variables. We apply Bayesian-model averaging across different regression specifications selected from a set of potential predictors that includes lagged values of inflation, a host of real activity data, term structure data, nominal data, and surveys. In this model average, we can entertain different channels of structural instability by incorporating stochastic breaks in the regression parameters of each individual specification within this average, allowing for breaks in the error variance of the ...
Working Paper
A new monthly indicator of global real economic activity
In modelling macroeconomic time series, often a monthly indicator of global real economic activity is used. We propose a new indicator, named World steel production, and compare it to other existing indicators, precisely the Kilian?s index of global real economic activity and the index of OECD World industrial production. We develop an econometric approach based on desirable econometric properties in relation to the quarterly measure of World or global gross domestic product to evaluate and to choose across different alternatives. The method is designed to evaluate short-term, long-term and ...
Journal Article
The Fed’s Central Bank Swap Lines and FIMA Repo Facility
Building on the facility design and application experience from the global financial crisis, in March 2020 the Federal Reserve eased the terms on its standing swap lines in collaboration with other central banks, reactivated temporary swap agreements, and introduced the new Foreign and International Monetary Authorities (FIMA) Repo Facility. While these facilities have similarities, they differ in their operations, breadth of counterparties, and range of potential effects. This article provides key details on these facilities and highlights evidence that they can reduce strains in global ...
Working Paper
Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach
This paper focuses on forecasting quarterly energy prices of commodities, such as oil, gas and coal, using the Global VAR dataset proposed by Mohaddes and Raissi (2018). This dataset includes a number of potentially informative quarterly macroeconomic variables for the 33 largest economies, overall accounting for more than 80% of the global GDP. To deal with the information in this large database, we apply a dynamic factor model based on a penalized maximum likelihood approach that allows us to shrink parameters to zero and to estimate sparse factor loadings. The estimated latent factors show ...
Working Paper
A Bayesian multi-factor model of instability in prices and quantities of risk in U.S. financial markets
This paper analyzes the empirical performance of two alternative ways in which multi-factor models with time-varying risk exposures and premia may be estimated. The first method echoes the seminal two-pass approach advocated by Fama and MacBeth (1973). The second approach extends previous work by Ouysse and Kohn (2010) and is based on a Bayesian approach to modelling the latent process followed by risk exposures and idiosynchratic volatility. Our application to monthly, 1979-2008 U.S. data for stock, bond, and publicly traded real estate returns shows that the classical, two-stage approach ...